Products of geodesic graphs and the geodetic number of products

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Products of geodesic graphs and the geodetic number of products

Given a connected graph and a vertex x ∈ V (G), the geodesic graph Px(G) has the same vertex set as G with edges uv iff either v is on an x − u geodesic path or u is on an x − v geodesic path. A characterization is given of those graphs all of whose geodesic graphs are complete bipartite. It is also shown that the geodetic number of the Cartesian product of Km,n with itself, where m,n ≥ 4, is e...

متن کامل

Geodesic Convexity and Cartesian Products in Graphs

In this work we investigate the behavior of various geodesic convexity parameters with respect to the Cartesian product operation for graphs. First, we show that the convex sets arising from geodesic convexity in a Cartesian product of graphs are exactly the same as the convex sets arising from the usual binary operation ⊕ for making a convexity space out of the Cartesian product of any two con...

متن کامل

Geodetic and hull numbers of strong products of graphs

Classic convexity can be extended to graphs in a natural way by considering shortest paths, also called geodesics: a set S of vertices of a graph is convex if it contains all the vertices lying in some geodesic with endpoints in S and the convex hull of a set S of vertices is the minimum convex set containing S. Farber and Jamison [9] characterized the graphs such that every convex set is the c...

متن کامل

Grundy number and products of graphs

The Grundy number of a graph G, denoted by Γ(G), is the largest k such that G has a greedy k-colouring, that is a colouring with k colours obtained by applying the greedy algorithm according to some ordering of the vertices of G. In this paper, we study the Grundy number of the lexicographic, cartesian and direct products of two graphs in terms of the Grundy numbers of these graphs. Regarding t...

متن کامل

Domination Number of Cartesian Products of Graphs

Recall these definitions (from [2]): Definition (p. 116). In a graph G, a set S ⊆ V (G) is a dominating set if every vertex not in S has a neighbor in S. The domination number γ (G) is the minimum size of a dominating set in G. Definition (p. 193). The cartesian product of G and H, written G H, is the graph with vertex set V (G) × V (H) specified by putting (u, v) adjacent to (u′, v′) if and on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discussiones Mathematicae Graph Theory

سال: 2015

ISSN: 1234-3099,2083-5892

DOI: 10.7151/dmgt.1774